Package: SensMap 0.3

SensMap: Sensory and Consumer Data Mapping

External preference mapping technique is commonly used in sensory analysis field to explain consumer preferences in function of sensory attributes of products Danzart(1998) (<doi:10.1006/fstl.1998.0373>). The package provides map visualization with options in dimension reduction methods and prediction models from linear and non linear regressions. A smoothed version of the map performed using LOESS algorithm is available. A comparison approach of maps stability from different features before and after smoothing is provided. A 'shiny' application is included. It presents an easy GUI for the implemented functions as well as a comparative tool of fit models using several criteria. Basic analysis such as characterization of products, panelists and sessions likewise consumer segmentation are available.

Authors:Ibtihel Rebhi [aut, cre], Rihab Boubakri [ctb], Dhafer Malouche [ctb]

SensMap_0.3.tar.gz
SensMap_0.3.zip(r-4.5)SensMap_0.3.zip(r-4.4)SensMap_0.3.zip(r-4.3)
SensMap_0.3.tgz(r-4.5-any)SensMap_0.3.tgz(r-4.4-any)SensMap_0.3.tgz(r-4.3-any)
SensMap_0.3.tar.gz(r-4.5-noble)SensMap_0.3.tar.gz(r-4.4-noble)
SensMap_0.3.tgz(r-4.4-emscripten)SensMap_0.3.tgz(r-4.3-emscripten)
SensMap.pdf |SensMap.html
SensMap/json (API)

# Install 'SensMap' in R:
install.packages('SensMap', repos = c('https://ibtihelrebhi.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/ibtihelrebhi/sensmap/issues

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:

On CRAN:

Conda:

openjdk

2.70 score 4 scripts 179 downloads 4 exports 137 dependencies

Last updated 8 years agofrom:9cd26c00b0. Checks:1 OK, 8 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-winERRORMar 25 2025
R-4.5-macERRORMar 25 2025
R-4.5-linuxERRORMar 25 2025
R-4.4-winERRORMar 25 2025
R-4.4-macERRORMar 25 2025
R-4.4-linuxERRORMar 25 2025
R-4.3-winERRORMar 25 2025
R-4.3-macERRORMar 25 2025

Exports:PrefMapSensMapUISmoothMapStabMap

Dependencies:abindaskpassbackportsbase64encbootbroombslibcachemcarcarDatacliclustercodacolorspacecommonmarkcorrplotcowplotcpp11crayoncrosstalkcurldata.tabledendextendDerivdigestdoBydotCall64dplyrDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapfieldsflashClustfontawesomeFormulafsgenericsggdendroggfortifyggplot2ggpubrggrepelggsciggsignifglmultigluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvhttrisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrmapsMASSMatrixMatrixModelsmcmcMCMCpackmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplotlyplyrpolynompromisespurrrquantregR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackreformulasreshape2rJavarlangrmarkdownrstatixsassscalesscatterplot3dshinysourcetoolsspamSparseMstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunxtableyaml